The Spin of a Newborn Black Hole: Swift J1728.9-3613

Author:

Draghis Paul A.ORCID,Balakrishnan MayuraORCID,Miller Jon M.ORCID,Cackett EdwardORCID,Fabian Andrew C.ORCID,Miller-Jones JamesORCID,Ng MasonORCID,Raymond John C.ORCID,Reynolds MarkORCID,Zoghbi AbderahmenORCID

Abstract

Abstract The origin and distribution of stellar-mass black hole spins are a rare window into the progenitor stars and supernova events that create them. Swift J1728.9-3613 is an X-ray binary, likely associated with the supernova remnant (SNR) G351.9-0.9. An NuSTAR X-ray spectrum of this source during its 2019 outburst reveals reflection from an accretion disk extending to the innermost stable circular orbit. Modeling of the relativistic Doppler shifts and gravitational redshifts imprinted on the spectrum measures a dimensionless spin parameter of a = 0.86 ± 0.02 (1σ confidence), a small inclination angle of the inner accretion disk θ < 10°, and a subsolar iron abundance in the disk A Fe < 0.84. This high spin value rules out a neutron star primary at the 5σ level of confidence. If the black hole is located in a still visible SNR, it must be young. Therefore, we place a lower limit on the natal black hole spin of a > 0.82, concluding that the black hole must have formed with a high spin. This demonstrates that black hole formation channels that leave an SNR, and those that do not (e.g., Cyg X-1), can both lead to high natal spin with no requirement for subsequent accretion within the binary system. Emerging disparities between the population of high-spin black holes in X-ray binaries and the low-spin black holes that merge in gravitational wave events may therefore be explained in terms of different stellar conditions prior to collapse, rather than different environmental factors after formation.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3