Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope

Author:

Török T.ORCID,Linton M. G.ORCID,Leake J. E.ORCID,Mikić Z.ORCID,Lionello R.ORCID,Titov V. S.ORCID,Downs C.ORCID

Abstract

Abstract Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered.

Funder

NASA ∣ SMD ∣ Heliophysics Division

NSF ∣ Integrative and Collaborative Education and Research

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3