The Appearance of Vortices in Protoplanetary Disks in Near-infrared Scattered Light

Author:

Marr Metea,Dong RuobingORCID

Abstract

Abstract Azimuthally asymmetric structures have been discovered in millimeter continuum emission from many protoplanetary disks. One hypothesis is that they are vortices produced by the Rossby wave instability, for example at the edges of planet-opened gaps or dead zones. Confirming the vortex nature of these structures will have profound implications to planet formation. One way to test the hypothesis is to compare the observed morphology of vortex candidates in near-infrared scattered light with theoretical expectations. To this end, we synthesize the appearance of vortices in H-band polarized light by combining hydrodynamic and radiative transfer simulations of the Rossby wave instability at a dead-zone edge. In a disk at 140 pc, at the peak in its evolution a vortex at 65 au may appear as a radially narrow arc 50%–70% brighter compared with an axisymmetric disk model. The contrast depends on the inclination of the disk and the position angle of the vortex only weakly. Such contrast levels are well detectable in imaging observations of bright disks using instruments such as the Very Large Telescope/SPHERE, Subaru/SCExAO, and Gemini/GPI. A vortex also casts a shadow in the outer disk, which may aid its identification. Finally, at modest-to-high inclinations (e.g., 60°) a vortex may mimic a one-armed spiral. In the HD 34282 disk, such a one-armed spiral with a shadowed region on the outside has been found in scattered light. This feature roughly coincides with an azimuthal asymmetry in millimeter continuum emission, signifying the presence of a vortex.

Funder

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Alfred P. Sloan Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3