Testing a New Model of Embedded Protostellar Disks against Observations: The Majority of Orion Class 0/I Disks Are Likely Warm, Massive, and Gravitationally Unstable

Author:

Xu WenruiORCID

Abstract

Abstract We formulate a parameterized model of embedded protostellar disks and test its ability to estimate disk properties by fitting dust-continuum observations. The main physical assumptions of our model are motivated by a recent theoretical study of protostellar disk formation; these assumptions include that the disk should be marginally gravitationally unstable, and that the dominant dust heating mechanism is internal accretion heating instead of external protostellar irradiation. These assumptions allow our model to estimate reliably the disk mass even when the observed emission is optically thick and to determine self-consistent disk (dust) temperatures. Using our model to fit multiwavelength observations of 163 disks in the VANDAM Orion survey, we find that the majority (57%) of this sample can be fit well by our model. Using our model, we produce new estimates of Orion protostellar disk properties. We find that these disks are generally warm and massive, with a typical star-to-disk mass ratio M d / M = ( 1 ) in Class 0/I. We also discuss why our estimates differ from those in previous studies and the implications of our results on disk evolution and fragmentation.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3