Observations and Modeling of Unstable Proton and α Particle Velocity Distributions in Sub-Alfvénic Solar Wind at Parker Solar Probe Perihelia

Author:

Ofman LeonORCID,Boardsen Scott A.ORCID,Jian Lan K.ORCID,Mostafavi ParisaORCID,Verniero Jaye L.ORCID,Livi RobertoORCID,McManus MichaelORCID,Rahmati AliORCID,Larson DavinORCID,Stevens Michael L.ORCID

Abstract

Abstract Past observations show that solar wind (SW) acceleration occurs inside the sub-Alfvénic region, reaching the local Alfvén speed at typical distances ∼10–20 solar radii (R s ). Recently, Parker Solar Probe (PSP) traversed regions of sub-Alfvénic SW near perihelia in encounters E8–E12 for the first time, providing data in these regions. It became evident that the properties of the magnetically dominated SW are considerably different from the super-Alfvénic wind. For example, there are changes in the relative abundances and drift of α particles with respect to protons, as well as in the magnitude of magnetic fluctuations. We use data of the magnetic field from the FIELDS instrument, and construct ion velocity distribution functions (VDFs) from the sub-Alfvénic regions using Solar Probe ANalyzer for Ions data, and run 2.5D and 3D hybrid models of proton-α sub-Alfvénic SW plasma. We investigate the nonlinear evolution of the ion kinetic instabilities in several case studies, and quantify the transfer of energy between the protons, α particles, and the kinetic waves. The models provide the 3D ion VDFs at the various stages of the instability evolution in the SW frame. By combining observational analysis with the modeling results, we gain insights on the evolution of the ion instabilities, the heating and the acceleration processes of the sub-Alfvénic SW plasma, and quantify the exchange of energy between the magnetic and kinetic components. The modeling results suggest that the ion kinetic instabilities are produced locally in the SW, resulting in anisotropic heating of the ions, as observed by PSP.

Funder

NASA ∣ SMD ∣ Heliophysics Division

NASA ∣ Goddard Space Flight Center

NASA ∣ NASA Headquarters

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3