Corrected SFD: A More Accurate Galactic Dust Map with Minimal Extragalactic Contamination

Author:

Chiang Yi-KuanORCID

Abstract

Abstract The widely used Milky Way dust-reddening map, the Schlegel–Finkbeiner–Davis (SFD) map, was found to contain extragalactic large-scale structure (LSS) imprints. Such contamination is inherent in maps based on infrared emission, which pick up not only Galactic dust but also the cosmic infrared background (CIB). When SFD is used for extinction correction, overcorrection occurs in a spatially correlated and redshift-dependent manner, which could impact precision cosmology using galaxy clustering, lensing, and Type Ia supernova distances. Similarly, LSS imprints in other Galactic templates can affect intensity mapping and cosmic microwave background experiments. This paper presents a generic way to remove LSS traces in Galactic maps and applies it to SFD. First, we measure descriptive summary statistics of the CIB in SFD by cross-correlating the map with spectroscopic galaxies and quasars in the Sloan Digital Sky Survey tomographically as functions of redshift and angular scale. To reconstruct the LSS on the map level, however, additional information on the phases is needed. We build a large set of 180 overcomplete, full-sky basis template maps from the density fields of over 600 million galaxies in the Wide-field Infrared Survey Explorer and find a linear combination that reproduces all of the high-dimensional tomographic two-point statistics of the CIB in SFD. After subtracting this reconstructed LSS/CIB field, the end product is a full-sky Galactic dust-reddening map that supersedes SFD, carrying all Galactic features therein, with maximally suppressed CIB. We release this new dust map dubbed CSFD—the corrected SFD—at https://idv.sinica.edu.tw/ykchiang/CSFD.html and NASA’s LAMBDA archive.

Funder

National Science and Technology Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3