Ionized Carbon around IRC+10216

Author:

Reach William T.ORCID,Ruaud MaximeORCID,Wiesemeyer HelmutORCID,Riquelme DeniseORCID,Tram Le NgocORCID,Cernicharo JoseORCID,Smith NathanORCID,Chambers Edward T.ORCID

Abstract

Abstract Asymptotic giant branch stars create a rich inventory of molecules in their envelopes as they lose mass during later stages of their evolution. These molecules cannot survive the conditions in interstellar space, where they are exposed to ultraviolet photons of the interstellar radiation field. As a result, daughter molecules are the ones injected into space, and a halo of those molecules is predicted to exist around cool evolved stars. The most abundant molecule in the envelopes other than H2 is CO, which dissociates into C that is rapidly ionized into C+ in a halo around the star that is optically thin to the interstellar radiation field. We develop the specific predictions of the ionized carbon halo size and column density for the well-studied, nearby star IRC+10216. We compare those models to observations of the [C ii] 157.7 μm far-infrared fine structure line using the Stratospheric Observatory for Infrared Astronomy and Herschel. The combination of bright emission toward the star and upper limits to extended [C ii] is inconsistent with any standard model. The presence of [C ii] toward the star requires some dissociation and ionization in the inner part of the outflow, possibly due to a hot companion star. The lack of extended [C ii] emission requires that daughter products from CO photodissociation in the outer envelope remain cold. The [C ii] profile toward the star is asymmetric, with the blueshifted absorption due to the cold outer envelope.

Funder

National Aeronautics and Space Administration

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3