Magnetohydrodynamic Poynting Flux Vortices in the Solar Atmosphere and Their Role in Concentrating Energy

Author:

Silva Suzana S. A.ORCID,Verth GaryORCID,Rempel Erico L.ORCID,Ballai IstvanORCID,Jafarzadeh ShahinORCID,Fedun ViktorORCID

Abstract

Abstract The nature of energy generation, transport, and effective dissipation responsible for maintaining a hot solar upper atmosphere is still elusive. The Poynting flux is a vital parameter for describing the direction and magnitude of the energy flow, which is mainly used in solar physics for estimating the upward energy generated by photospheric plasma motion. This study presents a pioneering 3D mapping of the magnetic energy transport within a numerically simulated solar atmosphere. By calculating the Finite Time Lyapunov Exponent of the energy velocity, defined as the ratio of the Poynting flux to the magnetic energy density, we precisely identify the sources and destinations of the magnetic energy flow throughout the solar atmosphere. This energy mapping reveals the presence of transport barriers in the lower atmosphere, restricting the amount of magnetic energy from the photosphere reaching the chromosphere and corona. Interacting kinematic and magnetic vortices create energy channels, breaking through these barriers and allowing three times more energy input from photospheric motions to reach the upper atmosphere than before the vortices formed. The vortex system also substantially alters the energy mapping, acting as a source and deposition of energy, leading to localized energy concentration. Furthermore, our results show that the energy is transported following a vortical motion: the Poynting flux vortex. In regions where these vortices coexist, they favor conditions for energy dissipation through ohmic and viscous heating, since they naturally create large gradients in the magnetic and velocity fields over small spatial scales. Hence, the vortex system promotes local plasma heating, leading to temperatures around a million Kelvins.

Funder

Royal Society

UKRI ∣ Science and Technology Facilities Council

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

SOLARNET

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3