Plasmoid-fed Prominence Formation (PF2) During Flux Rope Eruption

Author:

Zhao XiaozhouORCID,Keppens RonyORCID

Abstract

Abstract We report a new, plasmoid-fed scenario for the formation of an eruptive prominence (PF2), involving reconnection and condensation. We use grid-adaptive resistive two-and-a-half-dimensional magnetohydrodynamic simulations in a chromosphere-to-corona setup to resolve this plasmoid-fed scenario. We study a preexisting flux rope (FR) in the low corona that suddenly erupts due to catastrophe, which also drives a fast shock above the erupting FR. A current sheet (CS) forms underneath the erupting FR, with chromospheric matter squeezed into it. The plasmoid instability occurs and multiple magnetic islands appear in the CS once the Lundquist number reaches ∼3.5 × 104. The remnant chromospheric matter in the CS is then transferred to the FR by these newly formed magnetic islands. The dense and cool mass transported by the islands accumulates in the bottom of the FR, thereby forming a prominence during the eruption phase. More coronal plasma continuously condenses into the prominence due to the thermal instability as the FR rises. Due to the fine structure brought in by the PF2 process, the model naturally forms filament threads, aligned above the polarity inversion line. Synthetic views at our resolution of 15 km show many details that may be verified in future high-resolution observations.

Funder

Fonds Wetenschappelijk Onderzoek

EC ∣ European Research Council

Onderzoeksraad, KU Leuven

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3