Comparison of the Composition of ICMEs from Active Regions and Quiet-Sun Regions

Author:

Li Jinrong,Song HongqiangORCID,Lv Qi,Fu HuiORCID,Li LepingORCID,Zheng RuishengORCID,Chen YaoORCID

Abstract

Abstract The composition of interplanetary coronal mass ejections (ICMEs), including the ionic charge states and elemental abundances of heavy elements, is tightly correlated with their source regions and eruption processes. This can help in analyzing the eruption mechanisms and plasma origins of CMEs, and deepen our understanding of energetic solar activities. The active regions and quiet-Sun regions have different physical properties; thus, from a statistical point of view, ICMEs originating from the two types of regions should exhibit different compositional characteristics. To demonstrate the differences comprehensively, we conduct survey studies on the ionic charge states of five elements (Mg, Fe, Si, C, and O) and the relative abundances of six elements (Mg/O, Fe/O, Si/O, C/O, Ne/O, and He/O) within ICMEs from 1998 February to 2011 August using data from the Advanced Composition Explorer. The results show that ICMEs from active regions have higher ionic charge states and relative abundances than those from quiet-Sun regions. For the active-region ICMEs, we further analyze the relations between their composition and flare class, and find a positive relationship between them, i.e., the higher the classes of the associated flares, the larger the means of the ionic charge states and relative abundances (except the C/O) within ICMEs. As more (less) fractions of ICMEs originate from active regions around the solar maximum (minimum), and active-region ICMEs usually are associated with higher-class flares, our studies might answer why the composition of ICMEs measured near 1 au exhibits a solar cycle dependence.

Funder

National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3