Effects of Forcing on Shocks and Energy Dissipation in Interstellar and Intracluster Turbulences

Author:

Cho Hyunjin,Ryu DongsuORCID,Kang HyesungORCID

Abstract

Abstract Observations indicate that turbulence in the interstellar medium (ISM) is supersonic (M turb ≫ 1) and strongly magnetized (β ∼ 0.01–1), while in the intracluster medium (ICM) it is subsonic (M turb ≲ 1) and weakly magnetized (β ∼ 100). Here, M turb is the turbulent Mach number and β is the plasma beta. We study the properties of shocks induced in these disparate environments, including the distribution of the shock Mach number, M s , and the dissipation of the turbulent energy at shocks, through numerical simulations using a high-order, accurate code based on the weighted essentially nonoscillatory scheme. In particular, we investigate the effects of different modes of the forcing that drives turbulence: solenoidal, compressive, and a mixture of the two. In ISM turbulence, while the density distribution looks different with different forcings, the velocity power spectrum, P v , on small scales exhibits only weak dependence. Hence, the statistics of shocks depend weakly on forcing either. In the ISM models with M turb ≈ 10 and β ∼ 0.1, the fraction of the turbulent energy dissipated at shocks is estimated to be ∼15%, not sensitive to the forcing mode. In contrast, in ICM turbulence, P v as well as the density distribution show strong dependence on forcing. The frequency and average Mach number of shocks are greater for compressive forcing than for solenoidal forcing; so is the energy dissipation. The fraction of the ensuing shock dissipation is in the range of ∼10%–35% in the ICM models with M turb ≈ 0.5 and β ∼ 106. The rest of the turbulent energy should be dissipated through turbulent cascade.

Funder

National Research Foundation of Korea

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3