Dynamical Analysis of the Maclaurin Disk with Velocity Dispersion and Its Influence on the Formation of the Bar

Author:

Worrakitpoonpon T.ORCID

Abstract

Abstract We investigate the influence of Toomre’s Q parameter on the bar-forming dynamics of the Maclaurin disk using N-body simulations. According to Toomre’s criterion, the local velocity dispersion parametrized by Q ≥ 1 is required to suppress the local axisymmetric instability but, in turn, it deviates particle orbits from a nearly circular limit in which particle natural frequencies are calculated. We resolve this by including the effect of velocity dispersion, as the pressure potential, into the effective potential with the gravitational potential. With this formulation, a circular orbit approximation is retrieved. The effective potential hypothesis can describe the Q dependence of angular and epicyclic motions of the processes of the formation of a bar and the established bars reasonably well provided that Q ≥ 1. This indicates the influence of the initial Q imprinted on the entire disk dynamics and not only that Q serves as the indicator of stability. In addition, we perform a stability test for the disk-in-halo systems. With the presence of a halo, disks are more susceptible to the formation of a bar as seen by the elevated critical Q than that for the isolated disk. This is attributed to the differential rotation that builds the unstable non-axisymmetric spiral modes more efficiently, which are the ingredients of the bar instability.

Funder

Program Management Unit for Human Resources & Institutional Development, Research and Innovation

Suranaree University of Technology

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3