Stochastic and Quasi-adiabatic Electron Heating in Quasi-parallel Shocks

Author:

Stasiewicz KrzysztofORCID,Eliasson BengtORCID

Abstract

Abstract Using Magnetospheric Multiscale observations at the Earth’s quasi-parallel bow shock we demonstrate that electrons are heated by two different mechanisms: a quasi-adiabatic heating process during magnetic field compression, characterized by the isotropic temperature relation T / B = ( T 0 / B 0 ) ( B 0 / B ) α with α = 2/3 when the electron heating function χ e < 1 , and a stochastic heating process when χ e > 1 . Both processes are controlled by the value of the stochastic heating function χ j = m j q j 1 B 2 div ( E ) for particles with mass m j and charge q j in the electric and magnetic fields E and B . Test-particle simulations are used to show that the stochastic electron heating and acceleration in the studied shock are accomplished by waves at frequencies (0.4–5) f ce (electron gyrofrequency) for bulk heating, and waves f > 5 f ce for acceleration of the tail of the distribution function. Stochastic heating can give rise to flat-top electron distribution functions, frequently observed near shocks. It is also shown that obliquely polarized electric fields of electron cyclotron drift and ion acoustic instabilities scatter the electrons into the parallel direction and keep the isotropy of the electron distribution. The results reported in this paper may be relevant to electron heating and acceleration at interplanetary shocks and other astrophysical shocks.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3