Helioseismic Investigation of Quasi-biennial Oscillation Source Regions

Author:

Jain KiranORCID,Chowdhury ParthaORCID,Tripathy Sushanta C.ORCID

Abstract

Abstract We studied the temporal evolution of quasi-biennial oscillations (QBOs) using acoustic mode oscillation frequencies from the Global Oscillation Network Group. The data used here span more than 25 yr, covering solar cycles 23 and 24 and the ascending phase of cycle 25. The analysis reveals that QBO-like signals are present in both the cycles, but with different periods. The dominant QBO period in cycle 23 is found to be about 2 yr, while it is about 3 yr in cycle 24. Furthermore, the quasi-biennial oscillatory signals are present only during the ascending and high-activity phases of cycle 23 and quickly weaken around 2005, during the declining phase. In comparison, the QBO signals are present throughout cycle 24, starting from 2009 to 2017. We also explored the depth dependence in QBO signals and obtained a close agreement at all depths, except in the near-surface shear layer. A detailed analysis of the near-surface shear layer suggests that the source region of QBOs is probably within a few thousand kilometers just below the surface.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3