The Launching of Cold Clouds by Galaxy Outflows. V. The Role of Anisotropic Thermal Conduction

Author:

Brüggen MarcusORCID,Scannapieco EvanORCID,Grete PhilippORCID

Abstract

Abstract Motivated by observations of multiphase galaxy outflows, we explore the impact of isotropic and anisotropic electron thermal conduction on the evolution of radiatively cooled, cold clouds embedded in hot, magnetized winds. Using the adaptive-mesh refinement code AthenaPK, we conduct simulations of clouds impacted by supersonic and transonic flows with magnetic fields initially aligned parallel and perpendicular to the flow direction. In cases with isotropic thermal conduction, an evaporative wind forms, stabilizing against instabilities and leading to a mass-loss rate that matches the hydrodynamic case. In anisotropic cases, the impact of conduction is more limited and strongly dependent on the field orientation. In runs with initially perpendicular fields, the field lines are folded back into the tail, strongly limiting conduction, but magnetic fields act to dampen instabilities and slow the stretching of the cloud in the flow direction. In the parallel case, anisotropic conduction aids cloud survival by forming a radiative wind near the front of the cloud, which suppresses instabilities and reduces mass loss. In all cases, anisotropic conduction has a minimal impact on the acceleration of the cloud.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability and Ly α emission of Cold Stream in the Circumgalactic Medium: impact of magnetic fields and thermal conduction;Monthly Notices of the Royal Astronomical Society;2023-12-12

2. Cloud atlas: navigating the multiphase landscape of tempestuous galactic winds;Monthly Notices of the Royal Astronomical Society;2023-12-08

3. Magnetic fields in multiphase turbulence: impact on dynamics and structure;Monthly Notices of the Royal Astronomical Society;2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3