Super-Eddington Mass Growth of Intermediate-mass Black Holes Embedded in Dusty Circumnuclear Disks

Author:

Toyouchi DaisukeORCID,Inayoshi KoheiORCID,Hosokawa TakashiORCID,Kuiper RolfORCID

Abstract

Abstract We perform the first three-dimensional radiation hydrodynamical simulations that investigate the growth of intermediate-mass BHs (IMBHs) embedded in massive self-gravitating, dusty nuclear accretion disks. We explore the dependence of mass accretion efficiency on the gas metallicity Z and mass injection at super-Eddington accretion rates from the outer galactic disk M ̇ in , and we find that the central BH can be fed at rates exceeding the Eddington rate only when the dusty disk becomes sufficiently optically thick to ionizing radiation. In this case, mass outflows from the disk owing to photoevaporation are suppressed, and thus a large fraction (≳40%) of the mass injection rate can feed the central BH. The conditions are expressed as M ̇ in > 2.2 × 10 1 M yr 1 ( 1 + Z / 10 2 Z ) 1 ( c s / 10 km s 1 ) , where c s is the sound speed in the gaseous disk. With increasing numerical resolution, vigorous disk fragmentation reduces the disk surface density, and dynamical heating by formed clumps makes the disk geometrically thicker. As a result, the photoevaporative mass-loss rate rises and thus the critical injection rate increases for fixed metallicity. This process enables super-Eddington growth of BHs until the BH mass reaches M BH 10 7 8 M , depending on the properties of the host dark-matter halo and metal-enrichment history. In the assembly of protogalaxies, seed BHs that form in overdense regions with a mass variance of 3–4σ at z ∼ 15–20 are able to undergo short periods of rapid growth and transit into the Eddington-limited growth phase afterward to be supermassive BHs observed at z > 6–7.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3