Abstract
Abstract
Short-period super-Earths and mini-Neptunes encircle more than ∼50% of Sun-like stars and are relatively amenable to direct observational characterization. Despite this, environments in which these planets accrete are difficult to probe directly. Nevertheless, pairs of planets that are close to orbital resonances provide a unique window into the inner regions of protoplanetary disks, as they preserve the conditions of their formation, as well as the early evolution of their orbital architectures. In this work, we present a novel approach toward quantifying transit timing variations within multiplanetary systems and examine the near-resonant dynamics of over 100 planet pairs detected by Kepler. Using an integrable model for first-order resonances, we find a clear transition from libration to circulation of the resonant angle at a period ratio of ≈0.6% wide of exact resonance. The orbital properties of these systems indicate that they systematically lie far away from the resonant forced equilibrium. Cumulatively, our modeling indicates that while orbital architectures shaped by strong disk damping or tidal dissipation are inconsistent with observations, a scenario where stochastic stirring by turbulent eddies augments the dissipative effects of protoplanetary disks reproduces several features of the data.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献