Abstract
Abstract
Efforts over 40 yr still leave the source of astronomical infrared emission bands largely unidentified. Here, we report the first laboratory infrared (6–25 μm) spectra of gas-phase fullerene-metal complexes, [C60-Metal]+ (Metal = Fe, V) and show with density functional theory calculations that complexes of C60 with cosmically abundant metals, including Li, Na, K, Mg, Ca, Al, V, and Fe, all have similar spectral patterns. Comparison with observational infrared spectra from several fullerene-rich planetary nebulae demonstrates a strong positive linear cross-correlation. The infrared features of [C60-Metal]+ coincide with four bands attributed earlier to neutral C60 bands and in addition also with several bands unexplained to date. Abundance and collision theory estimates indicate that [C60-Metal]+ could plausibly form and survive in astrophysical environments. Hence, [C60-Metal]+ are proposed as promising carriers, in supplement to C60, of observational bands, potentially representing the largest molecular species in space other than C60, C60
+, and C70.
Funder
KU Leuven Research Council
Research Foundation Flanders
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献