Modeling the Daily Variations of the Coronal X-ray Spectral Irradiance with Two Temperatures and Two Emission Measures

Author:

Schwab Bennet D.ORCID,Woods Thomas N.ORCID,Mason James PaulORCID

Abstract

Abstract The Miniature X-ray Solar Spectrometer (MinXSS-1) CubeSat observed solar X-rays between 0.5 and 10 keV. A two-temperature, two-emission-measure model is fit to each daily averaged spectrum. These daily average temperatures and emission measures are plotted against the corresponding daily solar 10.7 cm radio flux (F10.7) value and a linear correlation is found between each that we call the Schwab Woods Mason (SWM) model. The linear trends show that one can estimate the solar spectrum between 0.5 and 10 keV based on the F10.7 measurement alone. The cooler temperature component of this model represents the quiescent Sun contribution to the spectra and is essentially independent of solar activity, meaning the daily average quiescent Sun is accurately described by a single temperature (1.70 MK) regardless of solar intensity and only the emission measure corresponding to this temperature needs to be adjusted for higher or lower solar intensity. The warmer temperature component is shown to represent active region contributions to the spectra and varies between 5 and 6 MK. The Geostationary Operational Environmental Satellite (GOES) XRS-B data between 1 and 8 Å is used to validate this model and it is found that the ratio between the SWM model irradiance and the GOES XRS-B irradiance is close to unity on average. MinXSS-1 spectra during quiescent solar conditions have very low counts beyond around 3 keV. The SWM model can generate MinXSS-1 or Dual Aperture X-ray Solar Spectrometer spectra at very high spectral resolution and with extended energy ranges to fill in gaps between measurements and extend predictions back to 1947.

Funder

NASA ∣ Science Mission Directorate

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3