Abstract
Abstract
We measured the relative positions between two pairs of compact extragalactic sources (CESs), J1925-2219 and J1923-2104 (C1–C2) and J1925-2219 and J1928-2035 (C1–C3), on 2020 October 23–25 and 2021 February 5 (totaling four epochs), respectively, using the Very Long Baseline Array at 15 GHz. Accounting for the deflection angle dominated by Jupiter, as well as the contributions from the Sun and planets other than Earth, the Moon, and Ganymede (the most massive of the solar system’s moons), our theoretical calculations predict that the dynamical ranges of the relative positions across four epochs in R.A. of the C1–C2 pair and C1–C3 pair are 841.2 and 1127.9 μas, respectively. The formal accuracy in R.A. is about 20 μas, but the error in decl. is poor. The measured standard deviations of the relative positions across the four epochs are 51.0 and 29.7 μas in R.A. for C1–C2 and C1–C3, respectively. These values indicate that the accuracy of the post-Newtonian relativistic parameter, γ, is ∼0.061 for C1–C2 and ∼0.026 for C1–C3. Combining the two CES pairs, the measured value of γ is 0.984 ± 0.037, which is comparable to the latest published results for Jupiter as a gravitational lens, reported by Fomalont & Kopeikin, i.e., 1.01 ± 0.03.
Funder
the Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
ERC Advanced Investigator
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献