Luminous Fast Blue Optical Transients and Type Ibn/Icn SNe from Wolf-Rayet/Black Hole Mergers

Author:

Metzger Brian D.ORCID

Abstract

Abstract Progenitor models for the “luminous” subclass of Fast Blue Optical Transients (LFBOTs; prototype: AT2018cow) are challenged to simultaneously explain all of their observed properties: fast optical rise times of days or less; peak luminosities ≳1044 erg s−1; low yields ≲0.1M of 56Ni; aspherical ejecta with a wide velocity range (≲3000 km s−1 to ≳0.1–0.5c with increasing polar latitude); presence of hydrogen-depleted-but-not-free dense circumstellar material (CSM) on radial scales from ∼1014 cm to ∼3 × 1016 cm; embedded variable source of non-thermal X-ray/γ-rays, suggestive of a compact object. We show that all of these properties are consistent with the tidal disruption and hyper-accretion of a Wolf-Rayet (WR) star by a black hole or neutron star binary companion. In contrast with related previous models, the merger occurs with a long delay (≳100 yr) following the common envelope (CE) event responsible for birthing the binary, as a result of gradual angular momentum loss to a relic circumbinary disk. Disk-wind outflows from the merger-generated accretion flow generate the 56Ni-poor aspherical ejecta with the requisite velocity range. The optical light curve is powered primarily by reprocessing X-rays from the inner accretion flow/jet, though CSM shock interaction also contributes. Primary CSM sources include WR mass loss from the earliest stages of the merger (≲1014 cm) and the relic CE disk and its photoevaporation-driven wind (≳1016 cm). Longer delayed mergers may instead give rise to supernovae Type Ibn/Icn (depending on the WR evolutionary state), connecting these transient classes with LFBOTs.

Funder

National Science Foundation

NASA ∣ GSFC ∣ Astrophysics Science Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3