Inferring Coupling Strengths of Mixed-mode Oscillations in Red Giant Stars Using Deep Learning

Author:

Dhanpal SiddharthORCID,Benomar OthmanORCID,Hanasoge ShravanORCID,Takata MasaoORCID,Panda Subrata Kumar,Kundu Abhisek

Abstract

Abstract Asteroseismology is a powerful tool that may be applied to shed light on stellar interiors and stellar evolution. Mixed modes, behaving like acoustic waves in the envelope and buoyancy modes in the core, are remarkable because they allow for probing the radiative cores and evanescent zones of red giant stars. Here, we have developed a neural network that can accurately infer the coupling strength, a parameter related to the size of the evanescent zone, of solar-like stars in ∼5 ms. In comparison with existing methods, we found that only ∼43% of inferences were in agreement with a difference less than 0.03 in a sample of ∼1700 Kepler red giants. To understand the origin of these differences, we analyzed a few of these stars using independent techniques such as the Monte Carlo Markov Chain method and echelle diagrams. Through our analysis, we discovered that these alternate techniques are supportive of the neural-net inferences. We also demonstrate that the network can be used to yield estimates of coupling strength and period spacing in stars with structural discontinuities. Our findings suggest that the rate of decline in the coupling strength in the red giant branch is greater than previously believed. These results are in closer agreement with calculations of stellar-evolution models than prior estimates, further underscoring the remarkable success of stellar evolution theory and computation. Additionally, we show that the uncertainty in measuring period spacing increases rapidly with diminishing coupling strength.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3