An Unsupervised Machine Learning-based Algorithm for Detecting Weak Impulsive Narrowband Quiet Sun Emissions and Characterizing Their Morphology

Author:

Bawaji Shabbir,Alam Ujjaini,Mondal SurajitORCID,Oberoi DivyaORCID,Biswas AyanORCID

Abstract

Abstract The solar corona is extremely dynamic. Every leap in observational capabilities has been accompanied by unexpected revelations of complex dynamic processes. The ever more sensitive instruments now allow us to probe events with increasingly weaker energetics. A recent leap in the low-frequency radio solar imaging ability has led to the discovery of a new class of emissions, namely weak impulsive narrowband quiet Sun emissions (WINQSEs). They are hypothesized to be the radio signatures of coronal nanoflares and could potentially have a bearing on the long standing coronal heating problem. In view of the significance of this discovery, this work has been followed up by multiple independent studies. These include detecting WINQSEs in multiple data sets, using independent detection techniques and software pipelines, and looking for their counterparts at other wavelengths. This work focuses on investigating morphological properties of WINQSEs and also improves upon the methodology used for detecting WINQSEs in earlier works. We present a machine learning-based algorithm to detect WINQSEs, classify them based on their morphology, and model the isolated ones using 2D Gaussians. We subject multiple data sets to this algorithm to test its veracity. Interestingly, despite the expectations of their arising from intrinsically compact sources, WINQSEs tend to be resolved in our observations. We propose that this angular broadening arises due to coronal scattering. Hence, WINQSEs can provide ubiquitous and ever-present diagnostic of coronal scattering (and, in turn, coronal turbulence) in the quiet Sun regions, which has not been possible until date.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3