Breaking Degeneracies in Formation Histories by Measuring Refractory Content in Gas Giants

Author:

Chachan YayaatiORCID,Knutson Heather A.ORCID,Lothringer JoshuaORCID,Blake Geoffrey A.ORCID

Abstract

Abstract Relating planet formation to atmospheric composition has been a long-standing goal of the planetary science community. So far, most modeling studies have focused on predicting the enrichment of heavy elements and the C/O ratio in giant planet atmospheres. Although this framework provides useful constraints on the potential formation locations of gas giant exoplanets, carbon and oxygen measurements alone are not enough to determine where a given gas giant planet originated. Here, we show that characterizing the abundances of refractory elements (e.g., silicon and iron) can break these degeneracies. Refractory elements are present in the solid phase throughout most of the disk, and their atmospheric abundances therefore reflect the solid-to-gas accretion ratio during formation. We introduce a new framework that parameterizes the atmospheric abundances of gas giant exoplanets in the form of three ratios: Si/H, O/Si, and C/Si. Si/H traces the solid-to-gas accretion ratio of a planet and is loosely equivalent to earlier notions of “metallicity.” For O/Si and C/Si, we present a global picture of their variation with distance and time based on what we know from the solar system meteorites and an updated understanding of the variations of thermal processing within protoplanetary disks. We show that ultrahot Jupiters are ideal targets for atmospheric characterization studies using this framework as we can measure the abundances of refractories, oxygen, and carbon in the gas phase. Finally, we propose that hot Jupiters with silicate clouds and low water abundances might have accreted their envelopes between the soot line and the water snow line.

Funder

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3