Inferring Fundamental Properties of the Flare Current Sheet Using Flare Ribbons: Oscillations in the Reconnection Flux Rates

Author:

Corchado Albelo Marcel F.ORCID,Kazachenko Maria D.ORCID,Lynch Benjamin J.ORCID

Abstract

Abstract Magnetic reconnection is understood to be the main physical process that facilitates the transformation of magnetic energy into heat, motion, and particle acceleration during solar eruptions. Yet, observational constraints on reconnection region properties and dynamics are limited due to a lack of high-cadence and high-spatial-resolution observations. By studying the evolution and morphology of postreconnected field-lines footpoints, or flare ribbons and vector photospheric magnetic field, we estimate the magnetic reconnection flux and its rate of change with time to study the flare reconnection process and dynamics of the current sheet above. We compare high-resolution imaging data to study the evolution of the fine structure in flare ribbons as ribbons spread away from the polarity inversion line. Using data from two illustrative events (one M- and X-class flare), we explore the relationship between the ribbon-front fine structure and the temporal development of bursts in the reconnection region. Additionally, we use the RibbonDB database to perform statistical analysis of 73 (C- to X-class) flares and identify quasiperiodic pulsation (QPP) properties using the Wavelet Transform. Our main finding is the discovery of QPP signatures in the derived magnetic reconnection rates in both example events and the large flare sample. We find that the oscillation periods range from 1 to 4 minutes. Furthermore, we find nearly cotemporal bursts in Hard X-ray (HXR) emission profiles. We discuss how dynamical processes in the current sheet involving plasmoids can explain the nearly cotemporal signatures of quasiperiodicity in the reconnection rates and HXR emission.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3