Abstract
Abstract
Coronal holes (CHs) have subdued intensity and net blueshifts when compared to the quiet Sun (QS) at coronal temperatures. At transition region temperatures, such differences are obtained for regions with identical absolute photospheric magnetic flux density (∣B∣). In this work, we use spectroscopic measurements of the C ii 1334 Å line from the Interface Region Imaging Spectrograph, formed at chromospheric temperatures, to investigate the intensity, Doppler shift, line width, skew, and excess kurtosis variations with ∣B∣. We find the intensity, Doppler shift, and linewidths to increase with ∣B∣ for CHs and QS. The CHs show deficit in intensity and excess total widths over QS for regions with identical ∣B∣. For pixels with only upflows, CHs show excess upflows over QS, while for pixels with only downflows, CHs show excess downflows over QS that cease to exist at ∣B∣ ≤ 40. Finally, the spectral profiles are found to be more skewed and flatter than a Gaussian, with no difference between CHs and QS. These results are important in understanding the heating of the atmosphere in CH and QS, including solar wind formation, and provide further constraints on the modeling of the solar atmosphere.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献