First-principles-integrated Study of Blazar Synchrotron Radiation and Polarization Signatures from Magnetic Turbulence

Author:

Zhang HaochengORCID,Marscher Alan P.ORCID,Guo FanORCID,Giannios DimitriosORCID,Li XiaocanORCID,Negro MichelaORCID

Abstract

Abstract Blazar emission is dominated by nonthermal radiation processes that are highly variable across the entire electromagnetic spectrum. Turbulence, which can be a major source of nonthermal particle acceleration, can widely exist in the blazar emission region. The Turbulent Extreme Multi-Zone (TEMZ) model has been used to describe turbulent radiation signatures. Recent particle-in-cell (PIC) simulations have also revealed the stochastic nature of the turbulent emission region and particle acceleration therein. However, radiation signatures have not been systematically studied via first-principles-integrated simulations. In this paper, we perform combined PIC and polarized radiative transfer simulations to study synchrotron emission from magnetic turbulence in the blazar emission region. We find that the multiwavelength flux and polarization are generally characterized by stochastic patterns. Specifically, the variability timescale and average polarization degree (PD) are governed by the correlation length of the turbulence. Interestingly, magnetic turbulence can result in polarization angle swings with arbitrary amplitudes and duration, in either direction, that are not associated with changes in flux or PD. Surprisingly, these swings, which are stochastic in nature, can appear either bumpy or smooth, although large-amplitude swings (>180°) are very rare, as expected. Our radiation and polarization signatures from first-principles-integrated simulations are consistent with the TEMZ model, except that in the latter, there is a weak correlation, with zero lag, between flux and degree of polarization.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3