A Theory for Neutron Star and Black Hole Kicks and Induced Spins

Author:

Burrows AdamORCID,Wang TianshuORCID,Vartanyan DavidORCID,Coleman Matthew S. B.ORCID

Abstract

Abstract Using 20 long-term 3D core-collapse supernova simulations, we find that lower compactness progenitors that explode quasi-spherically due to the short delay to explosion experience smaller neutron star recoil kicks in the ∼100−200 km s−1 range, while higher compactness progenitors that explode later and more aspherically leave neutron stars with kicks in the ∼300−1000 km s−1 range. In addition, we find that these two classes are correlated with the gravitational mass of the neutron star. This correlation suggests that the survival of binary neutron star systems may in part be due to their lower kick speeds. We also find a correlation between the kick and both the mass dipole of the ejecta and the explosion energy. Furthermore, one channel of black hole birth leaves masses of ∼10 M , is not accompanied by a neutrino-driven explosion, and experiences small kicks. A second channel is through a vigorous explosion that leaves behind a black hole with a mass of ∼3.0 M kicked to high speeds. We find that the induced spins of nascent neutron stars range from seconds to ∼10 ms, but do not yet see a significant spin/kick correlation for pulsars. We suggest that if an initial spin biases the explosion direction, a spin/kick correlation would be a common byproduct of the neutrino mechanism of core-collapse supernovae. Finally, the induced spin in explosive black hole formation is likely large and in the collapsar range. This new 3D model suite provides a greatly expanded perspective and appears to explain some observed pulsar properties by default.

Funder

NSF ∣ MPS ∣ Division of Astronomical Sciences

NSF ∣ MPS ∣ Division of Physics

DOE ∣ SC ∣ Nuclear Physics

Publisher

American Astronomical Society

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3