The CAMELS Project: Expanding the Galaxy Formation Model Space with New ASTRID and 28-parameter TNG and SIMBA Suites

Author:

Ni YueyingORCID,Genel ShyORCID,Anglés-Alcázar DanielORCID,Villaescusa-Navarro FranciscoORCID,Jo YongseokORCID,Bird SimeonORCID,Di Matteo TizianaORCID,Croft RupertORCID,Chen NianyiORCID,de Santi Natalí S. M.ORCID,Gebhardt MatthewORCID,Shao HelenORCID,Pandey ShivamORCID,Hernquist LarsORCID,Dave RomeelORCID

Abstract

Abstract We present CAMELS-ASTRID, the third suite of hydrodynamical simulations in the Cosmology and Astrophysics with MachinE Learning (CAMELS) project, along with new simulation sets that extend the model parameter space based on the previous frameworks of CAMELS-TNG and CAMELS-SIMBA, to provide broader training sets and testing grounds for machine-learning algorithms designed for cosmological studies. CAMELS-ASTRID employs the galaxy formation model following the ASTRID simulation and contains 2124 hydrodynamic simulation runs that vary three cosmological parameters (Ω m , σ 8, Ω b ) and four parameters controlling stellar and active galactic nucleus (AGN) feedback. Compared to the existing TNG and SIMBA simulation suites in CAMELS, the fiducial model of ASTRID features the mildest AGN feedback and predicts the least baryonic effect on the matter power spectrum. The training set of ASTRID covers a broader variation in the galaxy populations and the baryonic impact on the matter power spectrum compared to its TNG and SIMBA counterparts, which can make machine-learning models trained on the ASTRID suite exhibit better extrapolation performance when tested on other hydrodynamic simulation sets. We also introduce extension simulation sets in CAMELS that widely explore 28 parameters in the TNG and SIMBA models, demonstrating the enormity of the overall galaxy formation model parameter space and the complex nonlinear interplay between cosmology and astrophysical processes. With the new simulation suites, we show that building robust machine-learning models favors training and testing on the largest possible diversity of galaxy formation models. We also demonstrate that it is possible to train accurate neural networks to infer cosmological parameters using the high-dimensional TNG-SB28 simulation set.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Debiasing with Diffusion: Probabilistic Reconstruction of Dark Matter Fields from Galaxies with CAMELS;The Astrophysical Journal;2024-07-30

2. Cosmology from One Galaxy in a Void?;The Astrophysical Journal Letters;2024-07-24

3. The baryon cycle in modern cosmological hydrodynamical simulations;Monthly Notices of the Royal Astronomical Society;2024-07-13

4. Comparison of models for the warm-hot circumgalactic medium around Milky Way-like galaxies;Monthly Notices of the Royal Astronomical Society;2024-07-11

5. Cosmology with Multiple Galaxies;The Astrophysical Journal;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3