A Novel RID Algorithm of Muon Trajectory Reconstruction in Water Cherenkov Detectors

Author:

Kaushal NeeravORCID

Abstract

Abstract Cosmic rays that strike the top of the Earth’s atmosphere generate a shower of secondary particles that move toward the surface with relativistic speeds. Water Cherenkov detectors (WCDs) on the ground can detect charged muons, which are one of the many particles generated in the shower, with the Cherenkov imaging technique. A large number of these muons travel in WCD tanks near the speed of light in a vacuum, faster than the speed of light in water, and so trigger isotropic Cherenkov radiation, which is detected by the photomultiplier tubes (PMTs) placed inside the tanks. When the radial component of the speed of the muon toward a PMT drops from superluminal to subluminal, the PMT records Cherenkov light from an optical phenomenon known as relativistic image doubling (RID), which causes two Cherenkov images of the same muon to appear suddenly, with both images moving in geometrically opposite directions on the original muon track. The quantities associated with the RID effect can be measured experimentally with a variety of detector types and can be used to find various points on the original trajectory of the muon. In this paper, a detailed study of reconstructing the trajectory of a muon entering a WCD using the RID technique has been presented. It is found that the measurements of standard RID observables enables a complete reconstruction of the trajectory of the muon to a high degree of accuracy with less than 1% error.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3