Unveiling Properties of the Nonthermal X-Ray Production in the Gamma-Ray Binary LS 5039 Using the Long-term Pattern of Its Fast X-Ray Variability

Author:

Yoneda HirokiORCID,Bosch-Ramon ValentiORCID,Enoto TeruakiORCID,Khangulyan DmitryORCID,Ray Paul S.ORCID,Strohmayer TodORCID,Tamagawa ToruORCID,Wadiasingh ZorawarORCID

Abstract

Abstract Gamma-ray binary systems, a subclass of high-mass X-ray binaries, show nonthermal emissions from radio to TeV. While efficient electron acceleration is considered to take place in them, the nature of the acceleration mechanism and the physical environments in these systems have been a long-standing question. In this work, we report on long-term recurrent patterns in the short-term variability of the soft X-ray emission of LS 5039, one of the brightest gamma-ray binary systems. The Neutron star Interior Composition Explorer (NICER) observed LS 5039 four times from 2018 to 2021. By comparing them with the previous Suzaku and NuSTAR long-exposure observations, we studied the long-term evolution of the orbital light curve in the soft X-ray band. Although the observations by NICER and Suzaku are separated by ∼14 yr, i.e., more than 103 orbits, the orbital light curves show remarkable consistency after calculating their running averages with a window width ≳70 ks. Furthermore, all of the light curves show short-term variability with a timescale of ∼10 ks. Since the column density did not vary when the flux changed abruptly, such a short-term variability seems to be an intrinsic feature of the X-ray emission. We propose that the short-term variability is caused by clumps (or inhomogeneities) of the companion star wind impacting the X-ray production site. The observed timescale matches well with the lifetime of the clumps interacting with the pulsar wind and the dynamical timescale of the relativistic intrabinary shock in the pulsar wind scenario.

Funder

MEXT ∣ Japan Society for the Promotion of Science

MEC ∣ Spanish National Plan for Scientific and Technical Research and Innovation

UB ∣ Instituto de Ciencias del Cosmos, Universitat de Barcelona

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3