Global 3D Simulation of the Upper Atmosphere of HD189733b and Absorption in Metastable He i and Lyα Lines

Author:

Rumenskikh M. S.,Shaikhislamov I. F.ORCID,Khodachenko M. L.ORCID,Lammer H.,Miroshnichenko I. B.,Berezutsky A. G.,Fossati L.ORCID

Abstract

Abstract A 3D fully self-consistent multifluid hydrodynamic aeronomy model is applied to simulate the hydrogen-helium expanding upper atmosphere of the hot Jupiter HD189733b, and related absorption in the Lyα line and the 10830 Å line of metastable helium. We studied the influence of a high-energy stellar flux, a stellar wind, and Lyα cooling to reproduce the available observations. We found that to fit the width of the absorption profile of the 10830 Å line the escaping upper atmosphere of the planet should be close to the energy-limited escape achieved with significantly reduced Lyα cooling at the altitudes with an H i density higher than 3 × 106 cm−3. Based on the performed simulations, we constrain the helium abundance in the upper atmosphere of HD189733b to be a rather low value of He/H ∼ 0.005. We show that under the conditions of a moderate stellar wind similar to that of the Sun the absorption of the Lyα line takes place mostly within the Roche lobe due to thermal broadening at a level of about 7%. For an order of magnitude stronger wind, a significant absorption of about 15% at high blueshifted velocities of up to 100 km s−1 is generated in the bowshock region, due to Doppler broadening. These blueshifted velocities are still lower than those (∼200 km s−1) detected in one of the observations. We explain the differences between the performed observations, though not in all of the details, by stellar activity and the related fluctuations of the ionizing radiation (in the case of the 10830 Å line), and the stellar wind (in the case of the Lyα line).

Funder

Russian Science Foundation

The project

Austrian Science Fund

Russian Fund of Basic Research

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3