Unusually High HCO+/CO Ratios in and outside Supernova Remnant W49B

Author:

Zhou PingORCID,Zhang Gao-Yuan,Zhou XinORCID,Arias MariaORCID,Koo Bon-ChulORCID,Vink JaccoORCID,Zhang Zhi-YuORCID,Sun LeiORCID,Du Fu-JunORCID,Zhu HuiORCID,Chen YangORCID,Bovino StefanoORCID,Lee Yong-HyunORCID

Abstract

Abstract Galactic supernova remnants (SNRs) and their environments provide the nearest laboratories to study SN feedback. We performed molecular observations toward SNR W49B, the most luminous Galactic SNR in the X-ray band, aiming to explore signs of multiple feedback channels of SNRs on nearby molecular clouds (MCs). We found very broad HCO+ lines with widths of dv ∼ 48–75 km s−1 in the SNR southwest, providing strong evidence that W49B is perturbing MCs at a systemic velocity of V LSR = 61–65 km s−1, and placing the W49B at a distance of 7.9 ± 0.6 kpc. We observed unusually high-intensity ratios of HCO+ J=1–0/CO J=1–0 not only at shocked regions (1.1 ± 0.4 and 0.70 ± 0.16) but also in quiescent clouds over 1 pc away from the SNR’s eastern boundary (≥0.2). By comparing with the magnetohydrodynamics shock models, we interpret that the high ratio in the broad-line regions can result from a cosmic-ray (CR) induced chemistry in shocked MCs, where the CR ionization rate is enhanced to around 10–102 times of the Galactic level. The high HCO+/CO ratio outside the SNR is probably caused by the radiation precursor, while the luminous X-ray emission of W49B can explain a few properties in this region. The above results provide observational evidence that SNRs can strongly influence the molecular chemistry in and outside the shock boundary via their shocks, CRs, and radiation. We propose that the HCO+/CO ratio is a potentially useful tool to probe an SNR’s multichannel influence on MCs.

Funder

National Natural Science Foundation of China

NWO veni fellowship

Ministry of Science ICT and Future Planning

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3