The Physical Properties of Massive Green Valley Galaxies as a Function of Environments at 0.5 < z < 2.5 in 3D-HST/Candels Fields

Author:

Chang WenjunORCID,Fang GuanwenORCID,Gu YizhouORCID,Lin ZesenORCID,Lu ShiyingORCID,Kong XuORCID

Abstract

Abstract To investigate the effects of environment in the quenching phase, we study the empirical relations for green valley (GV) galaxies between overdensity and other physical properties (i.e., effective radius r e , Sérsic indices n, and specific star formation rate (sSFR)). Based on five 3D-HST/CANDELS fields, we construct a large sample of 2126 massive (M > 1010 M ) GV galaxies at 0.5 < z < 2.5 and split it into the higher overdensity quarter and the lower overdensity quarter. The results shows that GV galaxies in denser environments have higher n values and lower sSFR at 0.5 < z < 1, while there is no discernible distinction at 1 < z < 2.5. No significant enlarging or shrinking is found for GV galaxies in different environments within the same redshift bin. This suggests that a dense environment would promote the growth of bulges and suppress star formation activity of GV galaxies at 0.5 < z < 1.5 but would not affect the galaxy size. We also study the dependence of the fraction of three populations (blue cloud, GV, and red sequence) on both environments and M . At a given M , blue cloud fraction goes down with increasing environment density, while red sequence fraction is opposite. For the most massive GV galaxies, a sharp drop appears in the denser environment. Coupled with the mass dependence of three fractions in different redshift bins, our result implies that stellar mass and environments jointly promote the quenching process. Such a dual effect is also confirmed by recalculating the new effective GV fraction as the number of GV galaxies over the number of nonquiescent galaxies.

Funder

Guanwen Fang

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3