Abstract
Abstract
We present an in-depth study of surface brightness fluctuations (SBFs) in low-luminosity stellar systems. Using the MIST models, we compute theoretical predictions for absolute SBF magnitudes in the LSST, HST ACS/WFC, and proposed Roman Space Telescope filter systems. We compare our calculations to observed SBF–color relations of systems that span a wide range of age and metallicity. Consistent with previous studies, we find that single-age population models show excellent agreement with observations of low-mass galaxies with 0.5 ≲ g − i ≲ 0.9. For bluer galaxies, the observed relation is better fit by models with composite stellar populations. To study SBF recovery from low-luminosity systems, we perform detailed image simulations in which we inject fully populated model galaxies into deep ground-based images from real observations. Our simulations show that LSST will provide data of sufficient quality and depth to measure SBF magnitudes with precisions of ∼0.2–0.5 mag in ultra-faint
and low-mass classical (M
⋆ ≤ 107
M
⊙) dwarf galaxies out to ∼4 Mpc and ∼25 Mpc, respectively, within the first few years of its deep-wide-fast survey. Many significant practical challenges and systematic uncertainties remain, including an irreducible “sampling scatter” in the SBFs of ultra-faint dwarfs due to their undersampled stellar mass functions. We nonetheless conclude that SBFs in the new generation of wide-field imaging surveys have the potential to play a critical role in the efficient confirmation and characterization of dwarf galaxies in the nearby universe.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献