Abstract
Abstract
We investigate the buildup of the halo profile out to large scale in a cosmological simulation, focusing on the roles played by the recently proposed depletion radii. We explicitly show that halo growth is accompanied by the depletion of the environment, with the inner depletion radius demarcating the two. This evolution process is also observed via the formation of a trough in the bias profile, with the two depletion radii identifying key scales in the evolution. The ratio between the inner depletion radius and the virial radius is approximately a constant factor of 2 across redshifts and halo masses. The ratio between their enclosed densities is also close to a constant of 0.18. These simple scaling relations reflect the largely universal scaled mass profile on these scales, which only evolves weakly with redshift. The overall picture of the boundary evolution can be broadly divided into three stages according to the maturity of the depletion process, with cluster halos lagging behind low-mass ones in the evolution. We also show that the traditional slow and fast accretion dichotomy of halo growth can be identified as accelerated and decelerated depletion phases, respectively.
Funder
MOST ∣ National Natural Science Foundation of China
National Key Basic Research and Development Program of China
111 project
the science research grants from the China Manned Space Project
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献