Enhanced Subkiloparsec-scale Star Formation: Results from a JWST Size Analysis of 341 Galaxies at 5 < z < 14

Author:

Morishita TakahiroORCID,Stiavelli MassimoORCID,Chary Ranga-RamORCID,Trenti MicheleORCID,Bergamini PietroORCID,Chiaberge MarcoORCID,Leethochawalit NichaORCID,Roberts-Borsani GuidoORCID,Shen XuejianORCID,Treu TommasoORCID

Abstract

Abstract We present a comprehensive search and analysis of high-redshift galaxies in a suite of nine public JWST extragalactic fields taken in Cycle 1, covering a total effective search area of 358 arcmin 2 . Through conservative (8σ) photometric selection, we identify 341 galaxies at 5 < z < 14, with 109 having spectroscopic redshift measurements from the literature, including recent JWST NIRSpec observations. Our regression analysis reveals that the rest-frame UV size–stellar mass relation follows R eff M * 0.19 ± 0.03 , similar to that of star-forming galaxies at z ∼ 3, but scaled down in size by ∼0.7 dex. We find a much slower rate for the average size evolution over the redshift range, R eff ∝ (1 + z)−0.4±0.2, than that derived in the literature. A fraction (∼13%) of our sample galaxies are marginally resolved even in the NIRCam imaging (≲100 pc), located at ≳1.5σ below the derived size–mass slope. These compact sources exhibit a high star formation surface density ΣSFR > 10 M yr−1 kpc−2, a range in which only <0.01% of the local star-forming galaxy sample is found. For those with available NIRSpec data, no evidence of ongoing supermassive black hole accretion is observed. A potential explanation for the observed high [O iii]-to-Hβ ratios could be high shock velocities, likely originating within intense star-forming regions characterized by high ΣSFR. Lastly, we find that the rest-frame UV and optical sizes of our sample are comparable. Our results are consistent with these early galaxies building up their structures inside out and being yet to exhibit the strong color gradient seen at lower redshift.

Publisher

American Astronomical Society

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3