Particle Accelerations in a 2.5-dimensional Reconnecting Current Sheet in Turbulence

Author:

Li Yan,Ni Lei,Ye Jing,Mei Zhixing,Lin Jun

Abstract

Abstract Electric field induced in magnetic reconnection is an efficient mechanism for generating energetic particles, but the detailed role it plays is still an open question in solar flares. In this work, accelerations of particles in an evolving reconnecting current sheet are investigated via the test-particle approach, and the electromagnetic field is taken in a self-consistent fashion from a 2.5D numerical experiment for the magnetic reconnection process in the corona. The plasma instabilities like the tearing mode in the current sheet produce magnetic islands in the sheet, and island merging occurs as well. For the motion of the magnetic island, it yields the occurrence of the opposite electric field at both endpoints of the island; hence, tracking the accelerated particles around magnetic islands suggests that the parallel acceleration does not apparently impact the energy gain of particles, but the perpendicular acceleration does. Furthermore, our results indicate that the impact of the guide field on the trajectory of accelerated particles in a more realistic electromagnetic configuration works only on those particles that are energetic enough. The energy spectra of both species show a single power-law shape. The higher-energy component of the power-law spectrum results from the particles that are trapped in the current sheet, while the escaped and partly trapped particles contribute to the lower-energy component of the spectrum. The evolution of the spectrum shows a soft-hard-soft pattern that has been observed in flares.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3