A Study of the Accretion State of Magnetically Arrested Disks across Black Hole Spins for Radiatively Inefficient Accretion Flows

Author:

Zhang G.-Q.ORCID,Bégué DamienORCID,Pe’er A.ORCID,Zhang B.-B.ORCID

Abstract

Abstract The study of magnetically arrested disks (MAD) has attracted strong interest in recent years because these disk configurations were found to generate strong jets, as observed in many accreting systems. Here, we present the results of 14 general relativistic magnetohydrodynamic simulations of advection-dominated accretion flow in the MAD state across black hole (BH) spins, carried out with cuHARM. Our main findings are as follows. (i) The jets transport a significant amount of angular momentum to infinity in the form of Maxwell stresses. For positive, high spin, the rate of angular momentum transport is about five times higher than for negative spin. This contribution is nearly absent for a nonrotating BH. (ii) The mass accretion rate and the MAD parameter, both calculated at the horizon, are not correlated. However, their time derivatives are anticorrelated for every spin. (iii) For zero spin, the contribution of the toroidal component of the magnetic field to the magnetic pressure is negligible, while for a fast-spinning BH, it is on the same order as the contribution of the radial magnetic component. For high positive spin, the toroidal component even dominates. (iv) For negative spins, the jets are narrower than their positive-spin counterparts, while their fluctuations are stronger. The weak jet from the nonrotating BH is the widest with the weakest fluctuations. Our results highlight the complex nonlinear connection between the black hole spin and the resulting disk and jet properties in the MAD regime.

Funder

EC ∣ European Research Council

MOST ∣ National Key Research and Development Program of China

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radiation RMHD Accretion Flows around Spinning AGNs: A Comparative Study of MAD and SANE State;The Astrophysical Journal;2024-08-22

2. Enhanced Blandford Znajek jet in loop quantum black hole;Journal of Cosmology and Astroparticle Physics;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3