Absorption-line Observations of H3+ and CO in Sight Lines Toward the Vela and W28 Supernova Remnants

Author:

Indriolo NickORCID

Abstract

Abstract Supernova remnants act as particle accelerators, providing the cosmic-ray protons that permeate the interstellar medium and initiate the ion–molecule reactions that drive interstellar chemistry. Enhanced fluxes of cosmic-ray protons in close proximity to supernova remnants have been inferred from observations tracing particle interactions with nearby molecular gas. Here I present observations of H 3 + and CO absorption, molecules that serve as tracers of the cosmic-ray ionization rate and gas density, respectively, in sight lines toward the W28 and Vela supernova remnants. Cosmic-ray ionization rates inferred from these observations range from about 2 to 10 times the average value in Galactic diffuse clouds (∼3 × 10−16 s−1), suggesting that the gas being probed is experiencing an elevated particle flux. While it is difficult to constrain the line-of-sight locations of the absorbing gas with respect to the supernova remnants, these results are consistent with a scenario where cosmic rays are diffusing away from the acceleration site and producing enhanced ionization rates in the surrounding medium.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. α-enhanced astrochemistry: the carbon cycle in extreme galactic conditions;Monthly Notices of the Royal Astronomical Society;2023-11-27

2. Cosmic Ray Processes in Galactic Ecosystems;Galaxies;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3