Quasi-parallel Whistler Waves and Their Interaction with Resonant Electrons during High-velocity Bulk Flows in the Earth’s Magnetotail

Author:

Grigorenko Elena E.ORCID,Malykhin Andrey Y.,Kronberg Elena A.,Panov Evgeny V.

Abstract

Abstract In collisionless space, plasma waves are important channels of energy conversion, affecting the local particle velocity distribution functions through wave–particle interactions. In this paper we present a comparative statistical analysis of the characteristics of quasi-parallel narrowband whistler waves and the properties of resonant electrons interacting with these waves during the intervals of earthward and tailward high-velocity bulk flows produced by the near-Earth X-line and observed by Magnetospheric Multiscale Mission spacecraft. We found that on both sides of the X-line, the suprathermal electrons (≥1 keV) having large pitch angles make the major contribution to the maximal growth rate (γ) of these waves. The whistler waves were observed almost simultaneously with strong enhancements of perpendicular magnetic gradients localized at electron scales near dipolarization fronts associated with the earthward bulk flows, and near flux ropes/magnetic islands embedded into the tailward bulk flows. Betatron energization of electrons due to the appearance of such gradients increases the perpendicular anisotropy of electron distribution, which could be responsible for the whistler wave generation. We found that in the course of electron interactions with the whistler waves the lower-energy resonant electrons can transfer a part of their kinetic energy to the higher-energy electrons, especially in the Central Plasma Sheet. This results in formation/enhancement of energy-dependent perpendicular anisotropy and power-law tails in the high-energy range of electron velocity distribution. We conclude that despite the differences in the magnetic structure of the earthward and tailward bulk flows, the mechanisms of the quasi-parallel whistler wave generation and the properties of resonant electrons are quite similar.

Funder

Volkswagen Foundation

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3