Amoeba: Automated Molecular Excitation Bayesian Line-fitting Algorithm

Author:

Petzler AnitaORCID,Dawson J. R.ORCID,Wardle MarkORCID

Abstract

Abstract The hyperfine transitions of the ground-rotational state of the hydroxyl radical (OH) have emerged as a versatile tracer of the diffuse molecular interstellar medium. We present a novel automated Gaussian decomposition algorithm designed specifically for the analysis of the paired on-source and off-source optical depth and emission spectra of these OH transitions. In contrast to existing automated Gaussian decomposition algorithms, Amoeba (Automated Molecular Excitation Bayesian line-fitting Algorithm) employs a Bayesian approach to model selection, fitting all four optical-depth and four emission spectra simultaneously. Amoeba assumes that a given spectral feature can be described by a single centroid velocity and full width at half maximum, with peak values in the individual optical-depth and emission spectra then described uniquely by the column density in each of the four levels of the ground-rotational state, thus naturally including the real physical constraints on these parameters. Additionally, the Bayesian approach includes informed priors on individual parameters that the user can modify to suit different data sets. Here we describe Amoeba and establish its validity and reliability in identifying and fitting synthetic spectra with known (but hidden) parameters, finding that the code performs very well in a series of practical tests. Amoeba’s core algorithm could be adapted to the analysis of other species with multiple transitions interconnecting shared levels (e.g., the 700 MHz lines of the first excited rotational state of CH). Users are encouraged to adapt and modify Amoeba to suit their own use cases.

Funder

DECRA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3