Fast and Accurate Emulation of the SDO/HMI Stokes Inversion with Uncertainty Quantification

Author:

Higgins Richard E. L.ORCID,Fouhey David F.ORCID,Zhang Dichang,Antiochos Spiro K.ORCID,Barnes GrahamORCID,Hoeksema J. ToddORCID,Leka K. D.ORCID,Liu YangORCID,Schuck Peter W.ORCID,Gombosi Tamas I.ORCID

Abstract

Abstract The Helioseismic and Magnetic Imager (HMI) on board NASA’s Solar Dynamics Observatory produces estimates of the photospheric magnetic field, which are a critical input to many space weather modeling and forecasting systems. The magnetogram products produced by HMI and its analysis pipeline are the result of a per-pixel optimization that estimates solar atmospheric parameters and minimizes disagreement between a synthesized and observed Stokes vector. In this paper, we introduce a deep-learning-based approach that can emulate the existing HMI pipeline results two orders of magnitude faster than the current pipeline algorithms. Our system is a U-Net trained on input Stokes vectors and their accompanying optimization-based Very Fast Inversion of the Stokes Vector (VFISV) inversions. We demonstrate that our system, once trained, can produce high-fidelity estimates of the magnetic field and kinematic and thermodynamic parameters while also producing meaningful confidence intervals. We additionally show that despite penalizing only per-pixel loss terms, our system is able to faithfully reproduce known systematic oscillations in full-disk statistics produced by the pipeline. This emulation system could serve as an initialization for the full Stokes inversion or as an ultrafast proxy inversion. This work is part of the NASA Heliophysics DRIVE Science Center (SOLSTICE) at the University of Michigan, under grant NASA 80NSSC20K0600E, and will be open sourced.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3