Parallel and Momentum Superdiffusion of Energetic Particles Interacting with Small-scale Magnetic Flux Ropes in the Large-scale Solar Wind

Author:

le Roux J. A.ORCID

Abstract

Abstract A recently developed time-dependent fractional Parker transport equation is solved to investigate the parallel and momentum superdiffusion of energetic charged particles in an inner heliospheric region containing dynamic small-scale flux ropes (SMFRs). Both types of superdiffusive transport are investigated with fractional transport terms containing a fractional time integral combined with normal spatial or momentum derivatives. Just as for normal diffusion, accelerated particles form spatial peaks with a maximum amplification factor that increases with particle energy. Instead of growth of the spatial peaks until a steady state is reached as for normal diffusion, parallel superdiffusion causes the peaks to dissipate into plateaus followed by a rollover at late times. The peaks dissipate at a faster rate when parallel transport is more superdiffusive. Furthermore, the accelerated particle spectral distribution function inevitably becomes an f 0p −3 spectrum at late times in the test particle limit near the particle source despite the potential for spectral steepening from other transport terms. All this is a product of the growing domination of parallel spatial and especially momentum superdiffusion over other transport terms with time. Such extreme late time effects can be avoided by a transition to a normal diffusive state. Finally, fitting spatial peaks observed during SMFR acceleration events with the solution of the fractional Parker transport equation can potentially be used as a diagnostic for estimating the level of spatial and momentum superdiffusion in these events and how the levels of superdiffusion vary with distance from the Sun.

Funder

NASA ∣ NASA Headquarters

NSF EPSCOR Alabama

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3