Identification and Parameter Determination of F-type Herbig Stars from LAMOST DR8

Author:

Zhang Yun-JinORCID,Luo A-LiORCID,Jiang BiweiORCID,Hou WenORCID,Zuo FangORCID,Du BingORCID,Li ShuoORCID,Zhao Yong-Heng

Abstract

Abstract We identify 20 F-type Herbig stars and provide a list of 22 pre-main-sequence candidates from LAMOST DR8. The effective temperature, distance, extinction, stellar luminosity, mass, age, and radius are derived for each Herbig star based on optical spectra, photometry, Gaia EDR3 parallaxes, and pre-main-sequence evolutionary tracks. According to spectral energy distribution, 19 F-type Herbig stars belong to Class II YSOs, and one belongs to the flat-spectrum class. Four have Spitzer IRS spectra, of which three show extremely weak polycyclic aromatic hydrocarbon emissions, and three with both amorphous and crystalline silicate emissions share similar parameters and are at the same evolutionary stage. We detect a solar-nearby outbursting EXor Herbig star J034344.48+314309.3, a possible precursor of a Herbig Ae star. Intense emission lines of H i, He i, O i, Na i, and Ca ii originating from the rapid accretion during the outbursts are detected in its optical spectra, and silicate emission features are detected in its infrared spectrum. We also conduct a statistical analysis of the disk properties of all known Herbig stars using the defined infrared spectral indices ( α J K S and α K S W 3 ). The proportion of Herbig stars with moderate infrared excesses decreases as effective temperature increases. The majority of the precursors (F, G, or K type) have moderate infrared excesses. Hotter Herbig stars tend to have a larger proportion with large infrared excesses. The trends may be due to the fact that hotter stars have larger areas of re-emitting dust, although there is some scatter due to the particularities of each disk.

Funder

NSFC ∣ Joint Fund of Astronomy

NSFC

National Key R&D Program of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3