Magnetohydrodynamic Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model. I. Cross-equatorial Interactions of Bands

Author:

Belucz BernadettORCID,Dikpati MausumiORCID,McIntosh Scott W.ORCID,Leamon Robert J.ORCID,Erdélyi RobertusORCID

Abstract

Abstract Along with a butterfly diagram of sunspots, combined observational studies of ephemeral active regions, X-ray and EUV bright points, plage, filaments, faculae, and prominences demonstrate a pattern, which is known as the Extended Solar Cycle. This pattern indicates that the wings of the sunspot butterfly could be extended to much higher latitudes (up to ∼60°), to an earlier time than the start of a sunspot cycle, hence yielding a strong overlap between cycles. Thus, during the ongoing cycle’s activity near 30° latitude in each hemisphere, the next cycle kicks off at around 60°. By representing these epochs of overlaps by oppositely directed double magnetic bands in each hemisphere, we compute the unstable eigenmodes for MHD Rossby waves at the base of the convection zone and study how the properties of these energetically active Rossby waves change as these band pairs migrate equatorward. We find that in each hemisphere the low-latitude band interacts with the high-latitude band and drives the MHD instability as the solar activity progresses from 35°–15° latitude, which is essentially the rising phase. When the activity proceeds further equatorward from 15°, the interaction between low- and high-latitude bands weakens, and the cross-equatorial interaction between two low-latitude bands in each hemisphere starts. The eigenmodes in the latitude-longitude plane also reflect such changes in their pattern as the bend of the active cycle moves below 15° latitude.

Funder

Royal Society

Hungarian Science Foundation

National Center for Atmospheric Research

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of the Tachocline;Space Science Reviews;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3