A Simulation Study of Ultra-relativistic Jets. III. Particle Acceleration in FR-II Jets

Author:

Seo JeongbhinORCID,Ryu DongsuORCID,Kang HyesungORCID

Abstract

Abstract We study the acceleration of ultra-high-energy cosmic rays (UHECRs) in Class II Fanaroff–Riley (FR-II) radio galaxies by performing Monte Carlo simulations for the transport, scattering, and energy change of CR particles injected into time-evolving jet flows that are realized through relativistic hydrodynamic simulations. Toward that end, we adopt physically motivated models for the magnetic field and particle scattering. By identifying the primary acceleration process among diffusive shock acceleration (DSA), turbulent shear acceleration (TSA), and relativistic shear acceleration (RSA), we find that CRs of E ≲ 1 EeV gain energy mainly through DSA in the jet‐spine flow and backflow containing many shocks and turbulence. After they attain E ≳ a few exaelectronvolts, CRs are energized mostly via RSA at the jet–backflow interface, reaching energies well above 1020 eV. TSA makes a relatively minor contribution. The time-asymptotic energy spectrum of escaping particles is primarily governed by the jet power, shifting to higher energies at more powerful jets. The UHECR spectrum fits well to a double power-law form, whose break energy, E break, corresponds to the size-limited maximum energy. It is close to d / dE E 0.5 below E break, while it follows d / dE E 2.6 above E break, decreasing more gradually than the exponential. The power-law slope of the high-energy end is determined by energy boosts via non-gradual shear acceleration across the jet–backflow interface and confinement by an elongated cocoon. We conclude that giant radio galaxies could be major contributors to the observed UHECRs.

Funder

National Research Foundation of Korea

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3