Abstract
Abstract
The interactions among objects in a mean motion resonance are important for the orbital evolution of satellites and rings, especially Saturn’s ring arcs and associated moons. In this work, we examine interactions among massive bodies in the same corotation eccentricity resonance site that affect the orbital evolution of those bodies using numerical simulations. During these simulations, the bodies exchange angular momentum and energy during close encounters, altering their orbits. This energy exchange, however, does not mean that one body necessarily moves closer to exact corotation when the other moves away from it. Indeed, if one object moves toward one of these sites, the other object is equally likely to move toward or away from it. This happens because the timescale of these close encounters is short compared to the synodic period between these particles and the secondary mass (i.e., the timescale where corotation sites can be treated as potential maxima). Because the timescale of a gravitational encounter is comparable to the timescale of a collision, we could expect energy to be exchanged in a similar way for collisional interactions. In that case, these findings could be relevant for denser systems like the arcs in Neptune’s Adams ring and how they can be maintained in the face of frequent inelastic collisions.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献