Insights into the Galactic Bulge Chemodynamical Properties from Gaia Data Release 3

Author:

Liao XiaojieORCID,Li Zhao-YuORCID,Simion Iulia,Shen JuntaiORCID,Grand Robert,Fragkoudi Francesca,Marinacci FedericoORCID

Abstract

Abstract We explore the chemodynamical properties of the Galaxy in the azimuthal velocity V ϕ and metallicity [Fe/H] space using red giant stars from Gaia Data Release 3. The row-normalized V ϕ –[Fe/H] maps form a coherent sequence from the bulge to the outer disk, clearly revealing the thin/thick disk and the Splash. The metal-rich stars display bar-like kinematics, while the metal-poor stars show dispersion-dominated kinematics. The intermediate-metallicity population (−1 < [Fe/H]< − 0.4) can be separated into two populations, one that is bar-like, i.e., dynamically cold ( σ V R 80 km s−1) and fast-rotating (V ϕ ≳ 100 km s−1), and the Splash, which is dynamically hot ( σ V R 110 km s−1) and slow-rotating (V ϕ ≲ 100 km s−1). We compare the observations in the bulge region with an Auriga simulation where the last major merger event occurred ∼10 Gyr ago: only stars born around the time of the merger reveal a Splash-like feature in the V ϕ –[Fe/H] space, suggesting that the Splash is likely merger-induced, predominantly made up of heated disk stars and the starburst associated with the last major merger. Since the Splash formed from the proto-disk, its lower metallicity limit coincides with that of the thick disk. The bar formed later from the dynamically hot disk with [Fe/H] > − 1 dex, with the Splash not participating in the bar formation and growth. Moreover, with a set of isolated evolving N-body disk simulations, we confirm that a nonrotating classical bulge can be spun up by the bar and develop cylindrical rotation, consistent with the observations for the metal-poor stars.

Funder

National Natural Science Foundation of China

Shanghai Natural Science Research Grand

'111' Project of the Ministry of Education

China Manned Space Project

Shanghai Key Lab for Astrophysics and the National Natural Science Foundation of China

STFC Ernest Rutherford Fellowship

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinematics and dynamics of the Galactic bar revealed by Gaia long-period variables;Monthly Notices of the Royal Astronomical Society;2024-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3