Multifrequency Very Long Baseline Interferometry Imaging of the Subparsec-scale Jet in the Sombrero Galaxy (M104)

Author:

Yan XiORCID,Lu Ru-SenORCID,Jiang WuORCID,Krichbaum Thomas P.ORCID,Xie Fu-GuoORCID,Shen Zhi-QiangORCID

Abstract

Abstract We report multifrequency and multiepoch very long baseline interferometry studies of the subparsec jet in the Sombrero galaxy (M104, NGC 4594). Using Very Long Baseline Array data at 12, 22, 44, and 88 GHz, we study the kinematics of the jet and the properties of the compact core. The subparsec jet is clearly detected at 12 and 22 GHz, and the inner jet base is resolved down to ∼70 Schwarzschild radii (R s) at 44 GHz. The proper motions of the jet are measured with apparent subrelativistic speeds of 0.20 ± 0.08c and 0.05 ± 0.02c for the approaching and the receding jet, respectively. Based on the apparent speed and jet-to-counterjet brightness ratio, we estimate the jet viewing angle to be larger than ∼37°, and the intrinsic speed to be between ∼0.10c and 0.40c. Their joint probability distribution suggests the most probable values of the viewing angle and intrinsic speed to be 66 ° 6 ° + 4 ° and 0.19 ± 0.04c, respectively. We also find that the measured brightness temperatures of the core at 12, 22, and 44 GHz are close to the equipartition brightness temperature, indicating that the energy density of the radiating particles is comparable to the energy density of the magnetic field in the subparsec jet region. Interestingly, the measured core size at 88 GHz (∼25 ± 5 R s) deviates from the expected frequency dependence seen at lower frequencies. This may indicate a different origin for the millimeter emission, which can be explained by an advection-dominated accretion flow (ADAF) model. This model further predicts that at 230 and 340 GHz, the ADAF may dominate the radio emission over the jet.

Funder

MOST ∣ NSFC ∣ National Science Fund for Distinguished Young Scholars

CAS ∣ BFSE ∣ Key Research Program of Frontier Science, Chinese Academy of Sciences

Chinese Academy of Sciences, Shanghai Branch

MOST ∣ NSFC ∣ Key Programme

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3